

TEST REPORT ETSI EN 301 893 V2.1.1 (2017-05)					
Report Reference No	GTS20240426022-1-18				
Compiled by					
(position+printed name+signature):	File administrators Peter Xiao				
Supervised by	AL PROP				
(position+printed name+signature):	Test Engineer Evan Ouyang GTS Un Ou Jang				
Approved by					
(position+printed name+signature):	Manager Jason Hu				
Date of issue	Jun.21, 2024				
Representative Laboratory Name	Shenzhen Global Test Service Co.,Ltd.				
Address	No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong				
Applicant's name	Shenzhen Techtion Smart Electronics Co., Ltd				
Address:	Room 902, 8th Floor, Unit 1, Building No. 2, Xintianxia Chengyun Factory District, Vanke City Community, Bantian Street, Longgang District, Shenzhen, China				
Test specification:					
Standard	ETSI EN 301 893 V2.1.1 (2017-05)				
TRF Originator	Shenzhen Global Test Service Co.,Ltd.				
Master TRF	Dated 2014-12				
Shenzhen Global Test Service Co.,Ltd. All rights reserved.					
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.					
Test item description:	Outdoor Reflective Display Terminal				
Trade Mark	N/A				
Manufacturer	Shenzhen Techtion Smart Electronics Co., Ltd				
Model/Type reference	TS-156PHD				
List Model :	TS-780PHD, TS-101PHD, TS-105PHD, TS-133PHD, TS-215PHD, TS-286THD, TS-298THD, TS-280THD, TS-320PHD, TS-362THD, TS-401THD, TS-430PHD, TS-434THD, TS-500THD, TS-550PHD, TS-650THD, TS-750THD, TS-850THD, TS-860THD, TS-980THD, TS-XXXPHD, TS-XXXTHD(X=0-9,X=A-Z)				
Operation Frequency	: From 5180MHz-5240MHz				
Ratings:	DC 12.0V/4.0A by Adapter				
Result	: PASS				

TEST REPORT

Test Report No. :		GTS20240426022-1-18	Jun. 21, 2024 Date of issue		
			Date of issue		
Equipment under Test	:	Outdoor Reflective Display T	ērminal		
Model /Type	:	TS-156PHD			
Listed model	:	TS-780PHD, TS-101PHD, TS-105PHD, TS-133PHD, TS-215PHD, TS-286THD, TS-298THD, TS-280THD, TS-320PHD, TS-362THD, TS-401THD, TS-430PHD, TS-434THD, TS-500THD, TS-550PHD, TS-650THD, TS-750THD, TS-850THD, TS-860THD, TS-980THD, TS-XXXPHD, TS-XXXTHD(X=0-9,X=A-Z)			
Applicant	:	Shenzhen Techtion Smart	Electronics Co., Ltd		
Address	:	Room 902, 8th Floor, Unit 1, Building No. 2, Xintianxia Cheng Factory District, Vanke City Community, Bantian Street, Long District, Shenzhen, China			
Manufacturer	:	Shenzhen Techtion Smart	Electronics Co., Ltd		
Address	:		Building No. 2, Xintianxia Chengyun Community, Bantian Street, Longgang		

Test Result: PASS

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	7
2.4. EUT configuration	7
2.5. Test summary	8
2.6. Modifications	8
3. TEST ENVIRONMENT	9
3.1. Address of the test laboratory	9
3.2. Test Facility	9
3.3. Environmental conditions	9
3.4. Test Channels:	10
3.5. Statement of the measurement uncertainty	10
3.6. Equipments Used during the Test	11
4. TEST CONDITIONS AND RESULTS	13
4.1. Centre frequencies	13
4.2. Nominal Channel Bandwidth and Occupied Channel Bandwidth	16
4.3. RF output power, Transmit Power Control (TPC) and power density	20
4.3.1. RF output power at the highest power - PH	21
4.3.2. RF output power at the lowest power level of the TPC range - PL	24
4.4. Power density	25
4.5. Transmitter unwanted emissions	
4.5.1. Transmitter unwanted emissions outside the 5 GHz RLAN bands	
4.5.2. Transmitter unwanted emissions within the 5 GHz RLAN bands	
4.6. Receiver spurious emissions	
4.7. Dynamic Frequency Selection (DFS)	
4.8. Adaptivity	
4.9. Receiver Blocking	
4.10. User Access Restrictions	
4.11. Geo-location capability	
5. TEST SETUP PHOTOS OF THE EUT	
6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	57

1. TEST STANDARDS

The tests were performed according to following standards:

ETSI EN 301 893 V2.1.1 (2017-05)-5 GHz RLAN; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	May. 10, 2024
Testing commenced on		May. 10, 2024
Testing concluded on	:	Jun. 20, 2024

2.2. Product Description

Product Name:	Outdoor Reflective Display Terminal			
Trade Mark:	N/A			
Model/Type reference:	TS-156PHD			
List Model:	TS-780PHD, TS-101PHD, TS-105PHD, TS-133PHD, TS-215PHD, TS-286THD, TS-298THD, TS-280THD, TS-320PHD, TS-362THD, TS-401THD, TS-430PHD, TS-434THD, TS-500THD, TS-550PHD, TS-650THD, TS-750THD, TS-850THD, TS-860THD, TS-980THD, TS-XXXPHD, TS-XXXTHD(X=0-9,X=A-Z)			
Model Declaration	PCB board, structure and internal of these model(s) are the same, Only the model name different, So no additional models were tested.			
Power supply:	DC 12.0V/4.0A by Adapter			
Hardware Version	N/A			
Software Version	N/A			
Bluetooth				
Frequency Range	2402MHz ~ 2480MHz			
Channel Number	79 channels for Bluetooth (DSS) 40 channels for Bluetooth (DTS)			
Channel Spacing	1MHz for Bluetooth (DSS) 2MHz for Bluetooth (DTS)			
Modulation Type	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth (DSS) GFSK for Bluetooth (DTS)			
2.4GWLAN				
WLAN CE Operation frequency	IEEE 802.11b:2412-2472MHz IEEE 802.11g:2412-2472MHz IEEE 802.11n HT20:2412-2472MHz IEEE 802.11n HT40:2422-2462MHz			
WLAN CE Modulation Type	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)			
Channel number:	13 Channel for IEEE 802.11b/g/n (HT20) 9 Channel for IEEE 802.11n (HT40)			
Channel separation:	5MHz			
WIFI (5G Band)				
WLAN CE Operation frequency	5180-5240MHz			
WLAN CE Modulation Type	802.11a/n/ac: OFDM			
Channel number:	4 Channels for 20MHz bandwidth(5180-5240MHz) 2 channels for 40MHz bandwidth(5190~5230MHz) 1 channels for 80MHz bandwidth(5210MHz)			

SRD (5.8G Band)			
WLAN CE Operation 5745-5825MHz			
WLAN CE Modulation Type	802.11a/n/ac: OFDM		
Channel Number	5 channels for 20MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5755~5795MHz) 1 channels for 80MHz bandwidth(5775MHz)		
Antenna Description	Two External antenna respectively. WLAN not support 2*2MIMO technology. ANT0 used for WIFI TX/RX, 2.0 dBi(Max.) for 2.4GWLAN; ANT1 used for BT&WIFI TX/RX, 2.0 dBi(Max.) for BT and 2.0dBi (Max.) for 5GWLAN;		

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V/ 50 Hz	Ο	120V/60Hz
			12 V DC	Ο	24 V DC
		0	Other (specified in blank below)		

<u>DC 12.0V</u>

Channel list:

Channel	Frequency (MHz)		
36	5180		
38	5190		
40	5200		
42	5210		
44	5220		
46	5230		
48	5240		

2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- $\odot\,$ supplied by the lab

•	Adapter	M/N:	ADP-48D12
		Manufacturer:	Hunan Dajing Technology Co., Ltd
0	PC	M/N:	DESKYOP-EUIVCNR
		Manufacturer:	LENOVO
0	Display	M/N:	LE23CW-D
		Manufacturer:	THTF
0	Keyboard	M/N:	T460S
		Manufacturer:	LENOVO
0	Mouse	M/N:	Howard
		Manufacturer:	LENOVO
0	Earphone	M/N:	MDR-XB550AP
		Manufacturer:	SONY
0	USB flash disk	M/N:	U330
		Manufacturer:	aigo

2.5. Test summary

Test Item	Test Requirement ESTI EN301983	Verdict		
Centre frequencies	Section 5.4.2	Pass		
Nominal Channel Bandwidth and Occupied Channel Bandwidth	Section 5.4.3	Pass		
RF output power, Transmit Power Control (TPC) and power density	Section 5.4.4	Pass		
Transmitter unwanted emissions	Section 5.4.5& Section 5.4.6	Pass		
Receiver spurious emissions	Section 5.4.7	Pass		
Dynamic Frequency Selection (DFS)	Section 5.4.8	N/A		
Adaptivity	Section 5.4.9	Pass		
Receiver Blocking	Section 5.4.10	Pass		
User Access Restrictions	Section 4.2.9	Pass		
Geo-location capability	Section 4.2.10	N/A		
Note:N./A Stands for "Not applicable"				

Remark: The measurement uncertainty is not included in the test result.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature: 25 °C High Temperature: 45 °C Low Temperature: -20 °C Normal Voltage : DC 12.0V High Voltage: DC 13.2V Low Voltage: DC10.8V Relative Humidity: 55 % Air Pressure: 989 hPa

3.4. Test Channels:

				Test channels			
Test CI		Clause	Lower sub-band (5 15	Higher sub-band 5 725 MHz to 5 850 MHz			
			5 150 MHz to 5 250 MHz	5 250 MHz to 5 350 MHz			
Centre fre	quencies	5.3.2	C7 (see	note 1)	C8 (see note 1)		
Occupied Bandwidt		5.3.3	C	7	C8		
Power, po	wer density	5.3.4	C1	C2	C3, C4		
emissions	Transmitter unwanted emissions outside the 5.3.5 5 GHz RLAN bands		C7 (see	C8 (see note 1)			
emissions	er unwanted within the AN bands	5.3.6	C1	C2	C3, C4		
Receiver emissions		5.3.7	C7 (see	note 1)	C8 (see note 1)		
Transmit ((TPC)	Power Control	5.3.4	n.a. (see note 2)	C2 (see note 1)	C3, C4 (see note 1)		
Dynamic I Selection	Frequency (DFS)	5.3.8	n.a. (see note 2)	C5	C6 (see note 3)		
Adaptivity		5.3.9	C7		C8		
 C1, C3: The lowest declared channel for every declared nominal channel bandwidth within this band. For the power density testing, it is sufficient to only perform this test using the lowest nominal channel bandwidth. C2, C4: The highest declared channel for every declared nominal channel bandwidth within this band. For the power density testing, it is sufficient to only perform this test using the lowest nominal channel bandwidth. C5, C6: One channel out of the declared channels for this frequency range. If more than one nominal channel bandwidth has been declared for this sub-band, testing shall be performed using the lowest and highest nominal channel bandwidth. 							
C7, C8:	be repeated for every declared nominal channel bandwidth within this sub-band. For Adaptivity, testing shall be performed using the highest nominal channel bandwidth.						
	 In case of more than one channel plan has been declared, testing of these specific requirements need only be performed using one of the declared channel plans. 						
	2: Testing is not required for nominal channel bandwidths that fall completely within the frequency range 5 150 MHz to 5 250 MHz.						
NOTE 3:	Where the declared channel plan includes channels whose nominal channel bandwidth falls completely or partly within the 5 600 MHz to 5 650 MHz band, the tests for the <i>Channel Availability Check</i> (and where implemented, for the <i>Off-Channel CAC</i>) shall be performed on one of these channels in addition to a channel within the band 5 470 MHz to 5 600 MHz or within the band 5 650 MHz to 5 725 MHz.						

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency error	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission	1.60 dB	(1)
Radiated spurious emission	2.20 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

RF	RF output power&PSD&OOB&OBW &Hoping &Duty Cycle, Tx-sequence, Tx-gap&Adaptively& ReceiverBlocking& Centre frequencies & TPC								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date			
1	Spectrum Analyzer	Agilent	N9020A	MY48010425	2023/09/08	2024/09/07			
2	Vector Signal generator	Agilent	N5181A	MY49060502	2023/07/13	2024/07/12			
3	Signal generator	Agilent	E4421B	3610AO1069	2023/09/08	2024/09/07			
4	4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW53323507	2023/09/08	2024/09/07			
5	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY5365004	2023/09/08	2024/09/07			
6	Climate Chamber	ESPEC	EL-10KA	A20120523	2023/09/08	2024/09/07			
7	Spectrum Analyzer	R&S	FSV40	100019	2023/07/13	2024/07/12			
8	Universal Radio Communication	Rohde&Schw arz	CMU200	114353	2023/09/08	2024/09/07			
9	Wireless Commnunication Tester	Rohde&Schw arz	CMW500	125408	2023/07/13	2024/07/12			
10	Test Control Unit	Tonscend	JS0806-1	178060067	2023/07/13	2024/07/12			
11	Automated filter bank	Tonscend	JS0806-F	19F8060177	2023/07/13	2024/07/12			
12	EMI Test software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/			
13	EMI Test software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/			

	Transmitter spurious emissions & Receiver spurious emissions									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date				
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI 7	101102	2023/09/08	2024/09/07				
2	Spectrum Analyzer	Agilent	N9020A	MY480 10425	2023/09/08	2024/09/07				
3	Spectrum Analyzer	R&S	FSV40	100019	2023/07/13	2024/07/12				
4	By-log Antenna	SCHWARZBECK	VULB9163	000976	2023/07/13	2024/07/12				
5	Double Ridged Horn Antenna (1~18GHz)	SCHWARZBECK	BBHA 9120D	01622	2023/09/08	2024/09/07				
6	Horn Antenna (18GHz~40GHz)	Schwarzbeck	BBHA9170	791	2023/09/08	2024/09/07				
7	Amplifier (30MHz~1GHz)	Schwarzbeck	BBV 9743	#202	2023/07/13	2024/07/12				
8	Amplifier (1GHz~18GHz)	Taiwan Chengyi	EMC051845 B	980355	2023/07/13	2024/07/12				
9	Amplifier (26.5GHz~40GHz)	Schwarzbeck	BBV9179	9719- 025	2023/07/13	2024/07/12				
10	High-Pass Filter	K&L	9SH10- 2700/X1275 0-O/O	KL1420 31	2023/07/13	2024/07/12				
11	High-Pass Filter	K&L	41H10- 1375/U1275 0-O/O	KL1420 32	2023/07/13	2024/07/12				
12	High pass filter	Compliance Direction systems	BSU-6	34202	2023/07/13	2024/07/12				
13	RF Cable	HUBER+SUHNE R	RG214	N/A	2023/07/13	2024/07/12				
14	EMI Test software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/				

The calibration interval is 1 year.

4. TEST CONDITIONS AND RESULTS

4.1. Centre frequencies

<u>Limit</u>

The actual centre frequency for any given channel declared by the manufacturer shall be maintained within the range fc \pm 20 ppm.

Test Procedure

Refer to ETSI EN 301 908 V2.1.1 (2017-05) Clause 5.4.2

- 1. For equipment can operating without modulation
 - a This test method requires that the UUT can be operated in an unmodulated test mode.
 - b The UUT shall be connected to a suitable frequency measuring device (e.g. a frequency counter or a spectrum analyser) and operated in an unmodulated mode.
 - c The result shall be recorded.
- 2. For equipment operating with modulation
 - a This method is an alternative to the above method in case the UUT cannot be operated in an unmodulated mode.
 - b The UUT shall be connected to spectrum analyser.
 - c Max Hold shall be selected and the centre frequency adjusted to that of the UUT.
 - d The peak value of the power envelope shall be measured and noted. The span shall be reduced and the marker moved in a positive frequency increment until the upper, (relative to the centre frequency), -10 dBc point is reached. This value shall be noted as f_H.
 - e The marker shall then be moved in a negative frequency increment until the lower, (relative to the centre frequency), -10 dBc point is reached. This value shall be noted as f_L.
 - f The centre frequency is calculated as $(f_H + f_L) / 2$.
- 3. These measurements shall be performed under both normal and extreme test conditions.
- 4. One channel out of the declared channels for each sub-band shall be tested.

Test Results

	Reference Frequency: 5180 MHz 802.11a						
Test c	onditions	Test Channel /	Measured Result	Frequency			
Voltage (V)	Temperature (℃)	Frequency	(MHz)	Deviation (ppm)			
DC 12.0	+25		5179.994300	-1.10			
DO 10.0	-20	CH36/ 5180MHz	5180.037980	7.33			
DC 13.2	+45		5179.994276	-1.10			
DO 10.0	-20		5180.023805	4.60			
DC 10.8	+45		5179.998700	-0.25			
	Limit		±20 ppm				
	Result		PAS	SS			

	Reference Frequency: 5180 MHz 802.11n(20MHz)							
Test c	onditions	Test Channel /	Measured Result	Frequency				
Voltage (V)	Temperature (℃)		(MHz)	Deviation (ppm)				
DC 12.0	+25		5180.019521	3.77				
DO 40.0	-20	CH36/ 5180MHz	5180.009443	1.82				
DC 13.2	+45		5179.990728	-1.79				
DO 40.0	-20		5180.010871	2.10				
DC 10.8	+45		5179.997819	-0.42				
	Limit		±20 p	pm				
Result			PAS	S				

	Reference Frequency: 5190 MHz 802.11n(40MHz)							
Test conditions Voltage (V) Temperature (°C)		Test Channel / Measured Result Frequency (MHz)		Frequency Deviation (ppm)				
DC 12.0	+25		5189.967283	-6.30				
DO 40.0	-20	CH38/ 5190MHz	5189.974080	-4.99				
DC 13.2	+45		5190.019063	3.67				
DO 40.0	-20		5189.980304	-3.79				
DC 10.8	+45		5190.011289	2.18				
	Limit	-	±20 ppm					
	Result		PAS	S				

Reference Frequency: 5210 MHz 802.11ac(80MHz)							
Test c	onditions	Test Channel /	Measured Result	Frequency			
Voltage (V)	Temperature (℃)	Frequency	(MHz)	Deviation (ppm)			
DC 12.0	+25		5210.027059	5.19			
DC 43.3	-20	CH42/ 5210MHz	5209.994116	-1.13			
DC 13.2	+45		5209.983419	-3.18			
DO 10.0	-20	52 TOWN 12	5210.001490	0.29			
DC 10.8	+45		5209.967383	-6.26			
	Limit		±20 p	pm			
Result			PAS	S			

4.2. Nominal Channel Bandwidth and Occupied Channel Bandwidth

LIMIT

The Nominal Channel Bandwidth is the widest band of frequencies, inclusive of guard bands, assigned to a single channel.

The Nominal Channel Bandwidth shall be at least 5 MHz at all times.

The Occupied Channel Bandwidth is the bandwidth containing 99 % of the power of the signal. The Occupied Channel Bandwidth shall be between 80 % and 100 % of the declared Nominal Channel Bandwidth. In case of smart antenna systems (devices with multiple transmit chains) each of the transmit chains shall meet this requirement.

During an established communication, the device is allowed to operate temporarily with an Occupied Channel Bandwidth below 80 % of its Nominal Channel Bandwidth with a minimum of 4 MHz.

Test Procedure

Refer to ETSI EN 301 893 V2.1.1 (2017-05) Clause 5.4.3

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- · Centre Frequency: The centre frequency of the channel under test
- Resolution Bandwidth: 100 kHz
- Video Bandwidth: 300 kHz
- Frequency Span: 2 × Nominal Bandwidth (e.g. 40 MHz for a 20 MHz channel)

• Sweep time: > 1 s; for larger Nominal Bandwidths, the sweep time may be increased until a value where the sweep time has no impact on the RMS value of the signal

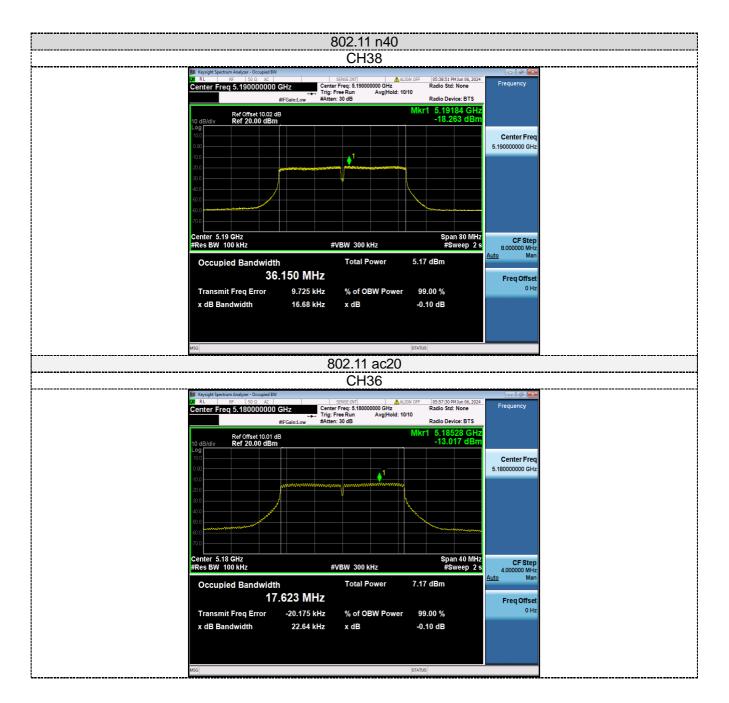
- Detector Mode: RMS
- Trace Mode: Max Hold

Step 2:

Wait for the trace to stabilize.

Step 3:

• Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.


• Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

The measurement described in step 1 to step 3 above shall be repeated in case of simultaneous transmissions in non-adjacent channels.

TEST RESULTS

Mode	Channel	Frequency (MHz)	99% Occupied Channel Bandwidth (MHz)	Result
802.11 a	CH36	5180	16.434	Pass
802.11 n 20	CH36	5180	17.622	Pass
802.11 n 40	CH38	5190	36.150	Pass
802.11 ac20	CH36	5180	17.623	Pass
802.11 ac40	CH38	5190	36.149	Pass
802.11 ac80	CH42	5210	74.942	Pass

4.3. RF output power, Transmit Power Control (TPC) and power density

<u>LIMIT</u>

The RF Output Power is the mean equivalent isotropically radiated power (e.i.r.p.) during a transmission burst. Transmit Power Control (TPC) is a mechanism to be used by the RLAN device to ensure a mitigation factor of at least 3 dB on the aggregate power from a large number of devices. This requires the RLAN device to have a TPC range from which the lowest value is at least 6 dB below the values for mean e.i.r.p. given in table 1 for devices with TPC.

TPC is not required for channels whose nominal bandwidth falls completely within the band 5150 MHz to 5250 MHz.

The Power Density is the mean equivalent isotropically radiated power (e.i.r.p.) density during a transmission burst.

For devices with TPC, the RF output power and the power density when configured to operate at the highest stated power level of the TPC range shall not exceed the levels given in table 1.

Devices are allowed to operate without TPC. See table 1 for the applicable limits in this case.

Frequency range		Mean e.i.r [dBi	•	Mean e.i.r.p. density limit [dBm/MHz]		
[MHz]]	with TPC	without TPC	with TPC	without TPC	
5 150 to 5	5 350	23	20/23 (see note 1)	10	7/10 (see note 2)	
5 470 to 5 725		30 (see note 3)	27 (see note 3)	17 (see note 3)	14 (see note 3)	
NOTE 1: The applicable limit is 20 dBm, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 23 dBm.						
NOTE 2: The applicable limit is 7 dBm/MHz, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 10 dBm/MHz.						
		evices without a Radar 250 MHz to 5 350 MHz		n function shall comply	with the limits for the	

Table 1: Mean e.i.r.p. limits for RF output power and power density at the highest power level

For devices using TPC, the RF output power during a transmission burst when configured to operate at the lowest stated power level of the TPC range shall not exceed the levels given in table 2. For devices without TPC, the limits in table 2 do not apply.

Table 2: Mean e.i.r.p. limits for RF output power at the lowest power level of the TPC range

Frequency range 5 250 MHz to 5 350 MHz 5 470 MHz to 5 725 MHz		Mean e.i.r.p. [dBm]	
		17	
		24 (see note)	
NOTE:	Detection function	hout a Radar Interference n shall comply with the I 5 250 MHz to 5 350 MHz.	

4.3.1. RF output power at the highest power - PH

Test Procedure

Refer to ETSI EN 301 893 V2.1.1 (2017-05) Clause 5.4.4

Conducted measurement: Measurement For RF Output Power

The measurement shall be performed under both normal and extreme test conditions.

Step 1:

• The equipment is configured into a continuous transmit mode (x = 1), proceed immediately with step 2. **Step 2**:

• The RF output power shall be determined using a wideband RF power meter with a thermocouple detector or an equivalent thereof and with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be noted as A (in dBm).

• In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the output power of each transmit chain shall be measured separately to calculate the total power (value A in dBm) for the UUT.

Step 3:

• The RF output power at the highest power level PH (e.i.r.p.) shall be calculated from the above measured power output A (in dBm), the observed duty cycle x, the stated antenna gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report. If more than one antenna assembly is intended for this power setting or TPC range, the gain of the antenna assembly with the highest gain shall be used.

 $PH = A + G + Y + 10 \times \log(1 / x) (dBm).$

Test Results

	802.11a								
Test con	ditions	Channell	Measured			1			
Temperature (℃)	Voltage (V)	Channel/ Frequency	power (dBm)	Antenna Gain (dBi)	e.i.r.p (dBm)	Limit (dBm)	Result		
+25 ℃	DC 12.0		7.28	2.00	9.28				
-20 ℃	DC 13.2		7.16	2.00	9.16				
-20 C	DC 10.8	36/5180	7.02	2.00	9.02	23	PASS		
· 45°0	DC 13.2		7.05	2.00	9.05				
+45 ℃	DC 10.8		7.64	2.00	9.64				

802.11n HT 20									
Test con	ditions	Channall	Measured		oirn	1			
Temperature (℃)	Voltage (V)	Channel/ Frequency	power (dBm)	Antenna Gain (dBi)	e.i.r.p (dBm)	Limit (dBm)	Result		
+25 ℃	DC 12.0		6.76	2.00	8.76	-	PASS		
-20 ℃	DC 13.2	36/5180	6.33	2.00	8.33				
-20 C	DC 10.8		6.52	2.00	8.52	23			
+45 ℃	DC 13.2		6.75	2.00	8.75				
+43 C	DC 10.8		6.14	2.00	8.14				

802.11n HT40								
Test conditions		Channel/	Measured					
Temperature (℃)	Voltage (V)	Frequency	power (dBm)	Antenna Gain (dBi)	e.i.r.p (dBm)	Limit (dBm)	Result	
+25 ℃	DC 12.0		4.43	2.00	6.43			
-20 ℃	DC 13.2		4.06	2.00	6.06			
-20 C	DC 10.8	38/5190	4.24	2.00	6.24	23	PASS	
. 45 %	DC 13.2		4.97	2.00	6.97			
+45 ℃	DC 10.8		4.41	2.00	6.41			

802.11ac20								
Test conditions		Channel/	Measured	• .				
Temperature (℃)	Voltage (V)	Frequency	power (dBm)	Antenna Gain (dBi)	e.i.r.p (dBm)	Limit (dBm)	Result	
+25 ℃	DC 12.0		6.08	2.00	8.08	23	PASS	
-20 ℃	DC 13.2	36/5180	6.12	2.00	8.12			
-20 C	DC 10.8		6.54	2.00	8.54			
· 45°0	DC 13.2		6.46	2.00	8.46			
+45 ℃	DC 10.8		6.06	2.00	8.06			

Report No.: GTS20240426022-1-18

802.11ac40							
Test conditions		Channel/	Measured	A (
Temperature (℃)	Voltage (V)	Frequency	power (dBm)	Antenna Gain (dBi)	e.i.r.p (dBm)	Limit (dBm)	Result
+25 ℃	DC 12.0		5.91	2.00	7.91	-	
-20 ℃	DC 13.2		5.43	2.00	7.43		
-20 C	DC 10.8	38/5190	5.91	2.00	7.91	23	PASS
	DC 13.2		5.43	2.00	7.43		
+45 ℃	DC 10.8		5.02	2.00	7.02		

802.11ac80								
Test conditions		Channel	Measured					
Temperature (℃)	Voltage (V)	Channel/ Frequency	power (dBm)	Antenna Gain (dBi)	e.i.r.p (dBm)	Limit (dBm)	Result	
+25 ℃	DC 12.0		1.79	2.00	3.79	-		
-20 ℃	DC 13.2		1.09	2.00	3.09			
-20 C	DC 10.8	42/5210	1.38	2.00	3.38	23	PASS	
. 4E °O	DC 13.2		1.92	2.00	3.92			
+45 ℃	DC 10.8		1.57	2.00	3.57			

4.3.2. RF output power at the lowest power level of the TPC range - PL

Test Procedure

Refer to ETSI EN 301 893 V2.1.1 (2017-05) Clause 5.4.4

Step 1 and step 2:

• See step 1 and step 2 in clause 5.4.4.2.1.1.2.

The duty cycle measurement done in step 1 of clause 5.4.4.2.1.1.2 may not need to be repeated. **Step 3:**

• The RF output power at the lowest power level PL (e.i.r.p.) shall be calculated from the above measured power

output A (in dBm), the observed duty cycle x, the stated antenna gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report. If more than one antenna assembly is intended for this power setting or TPC range, the gain of the antenna assembly with the highest gain shall be used:

 $PL = A + G + Y + 10 \times \log(1 / x) (dBm).$ (10)

• This value PL shall be compared to the applicable limit contained in table 3 of clause 4.2.3.2.3.

Test Results

This test item is not applicable for the EUT without TPC featur.

4.4. Power density

Test Procedure

Refer to ETSI EN 301 893 V2.1.1 (2017-05) Clause 5.4.4

Measurement For Power Density

The measurement shall only be performed at normal test conditions.

Step 1:

- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: The centre frequency of the channel under test
- RBW: 1MHz
- VBW: 3MHz
- Frequency Span: 2 × Nominal Bandwidth (e.g. 40 MHz for a 20 MHz channel)
- Detector Mode: Peak
- Trace Mode: Max Hold

Step 2:

• When the trace is complete, find the peak value of the power envelope and record the frequency.

Step 3:

- Make the following changes to the settings of the spectrum analyser:
- Centre Frequency: Equal to the frequency recorded in step 2
- Frequency Span: 3MHz
- RBW: 1MHz
- VBW: 3MHz
- Sweep Time: 1 minute
- Detector Mode: RMS
- Trace Mode: Max Hold

Step 4:

• When the trace is complete, the trace shall be captured using the "Hold" or "View" option on the spectrum analyser.

• Find the peak value of the trace and place the analyser marker on this peak. This level is recorded as the highest mean power (power density) D in a 1 MHz band.

• Alternatively, where a spectrum analyser is equipped with a function to measure spectral power density, this function may be used to display the power density D in dBm / MHz.

• In case of conducted measurements on smart antenna systems operating in a mode with multiple transmit chains active simultaneously, the power density of each transmit chain shall be measured separately to calculate the total power density (value D in dBm / MHz) for the UUT.

Step 5:

• The maximum spectral power density e.i.r.p. is calculated from the above measured power density D, the observed duty cycle x, the applicable antenna assembly gain G in dBi and if applicable the beamforming gain Y in dB, according to the formula below. This value shall be recorded in the test report. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the highest gain shall be used.

 $PD = D + G + Y + 10 \times \log(1 / x) (dBm / MHz)$

Mode	Channel/ Frequency (MHz)	Measured value (dBm/MHz)	Antenna Gain (dBi)	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
802.11a	36/5180	-2.98	2.0	-0.98	10	Pass
802.11n20	36/5180	-4.53	2.0	-2.53	10	Pass
802.11n40	38/5190	-9.59	2.0	-7.59	10	Pass
802.11ac20	36/5180	-4.62	2.0	-2.62	10	Pass
802.11ac40	38/5190	-8.90	2.0	-6.9	10	Pass
802.11ac80	42/5210	-13.93	2.0	-11.93	10	Pass

Test Results

4.5. Transmitter unwanted emissions

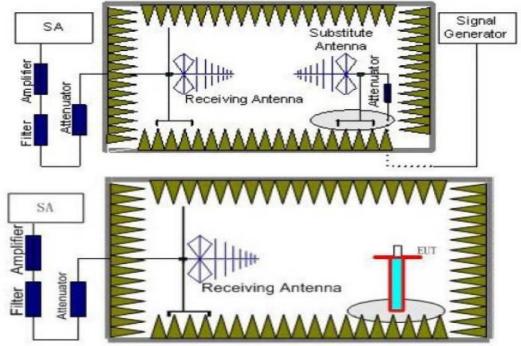
4.5.1. Transmitter unwanted emissions outside the 5 GHz RLAN bands

Limit

Transmitter unwanted emissions outside the 5 GHz RLAN bands are radio frequency emissions outside the 5 GHz RLAN bands(total frequency range that consists of the 5150 MHz to 5350 MHz and the 5470 MHz to 5725 MHz sub-bands).

The level of transmitter unwanted emissions outside the 5 GHz RLAN bands shall not exceed the limits given in table 3.

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 5,15 GHz	-30 dBm	1 MHz
5,35 GHz to 5,47 GHz	-30 dBm	1 MHz
5,725 GHz to 26 GHz	-30 dBm	1 MHz

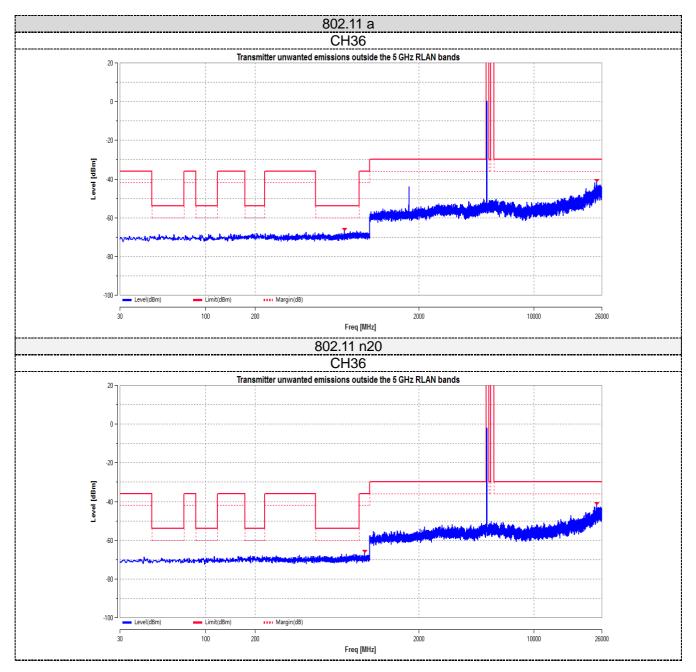

Table 3: Transmitter unwanted emission limits outside the 5 GHz RLAN bands

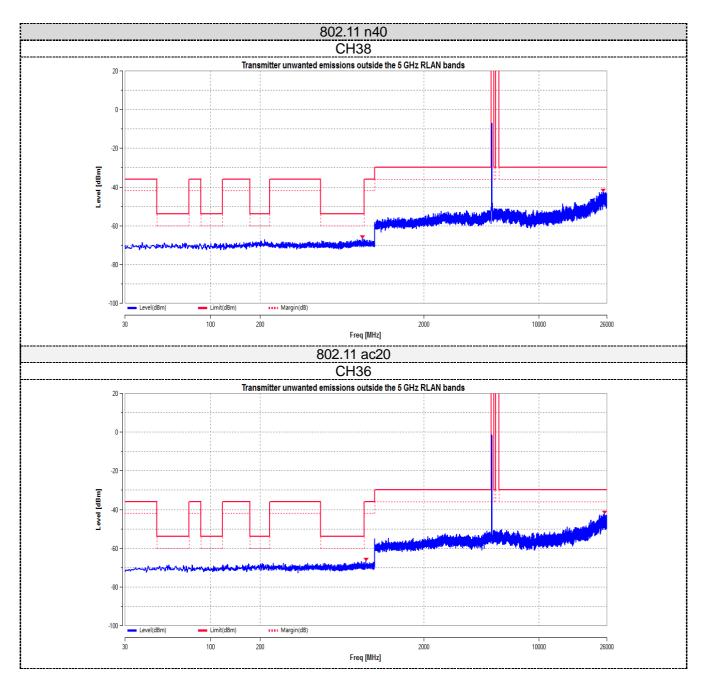
Test Procedure

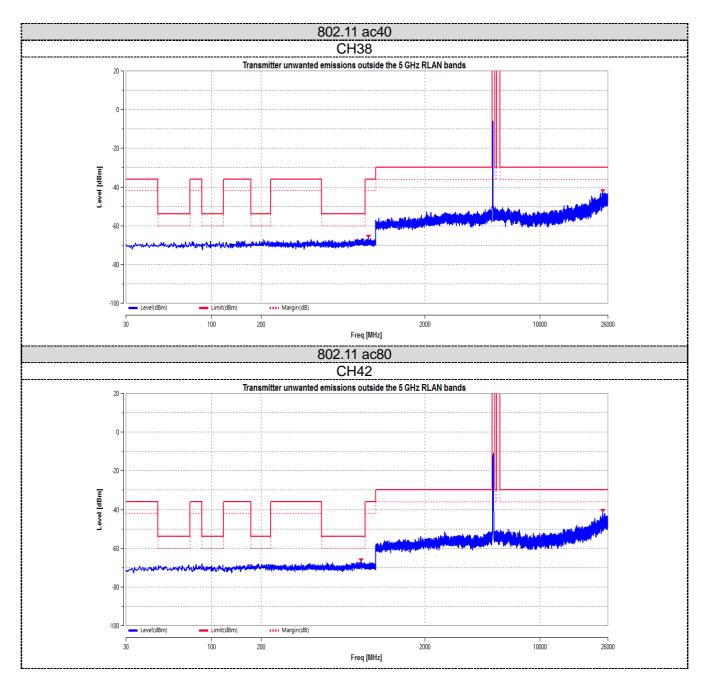
- 1. The measurement procedure follows ETSI EN 301 893 (V2.1.1) Sub-clause 5.4.5.2.2
- 2. The measurement shall only be performed at normal test conditions. One channel out of the declared channels for each sub-band shall be tested.

Test Configuration

Effective Radiated Power measurement (30 MHz to 26 GHz)


TEST RESULTS


Radioation Spurious Emissions:

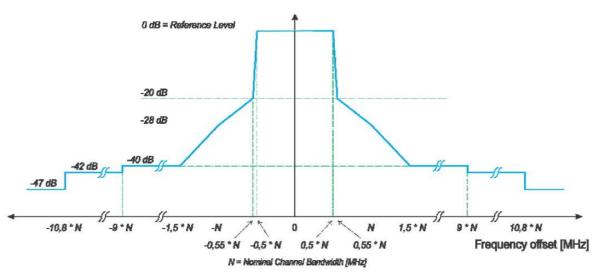

The Worst Test Result For 802.11n(20MHz) (The Worst Case)									
Frequency (MHz)	Polarization (H/V)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector				
	Channel 36 (5180MHz)								
54.68	Н	-84.32	-54.00	-30.32	PK				
62.78	V	-74.77	-54.00	-20.77	PK				
806.59	Н	-78.07	-54.00	-24.07	PK				
920.44	V	-75.71	-36.00	-39.71	PK				
3174.11	Н	-50.82	-30.00	-20.82	PK				
3194.54	V	-61.82	-30.00	-31.82	PK				
10360.08	Н	-54.78	-30.00	-24.78	PK				
10360.09	V	-51.38	-30.00	-21.38	PK				

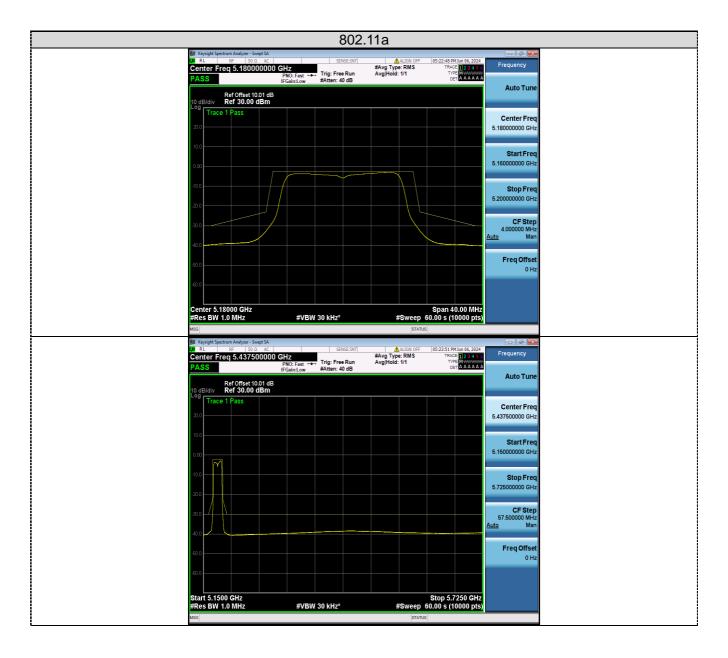
NOTE: All the modes have been tested and recorded worst mode in the report.

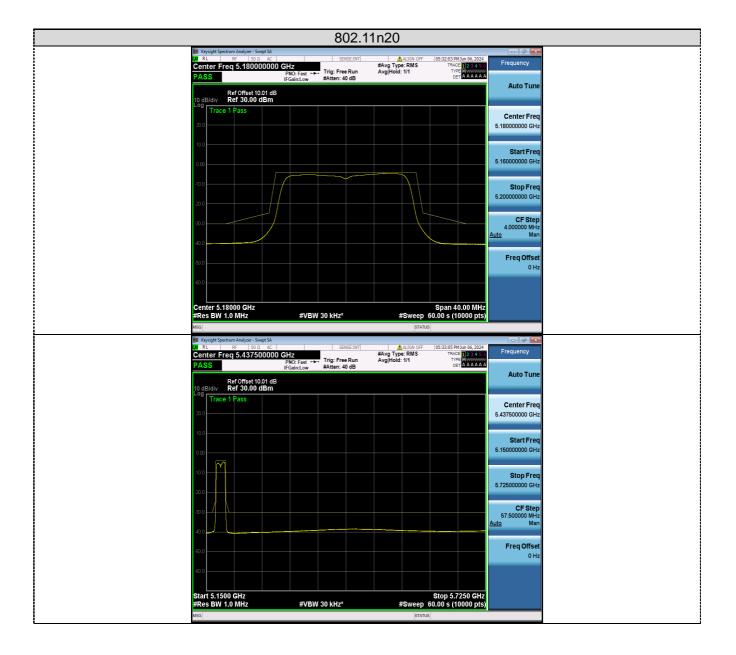
Conducted Spurious Emissions:

4.5.2. Transmitter unwanted emissions within the 5 GHz RLAN bands

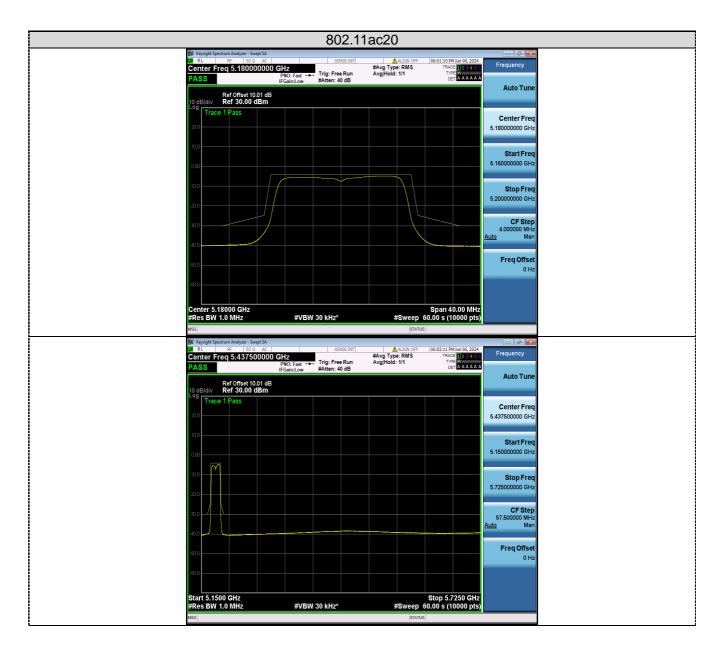
LIMIT

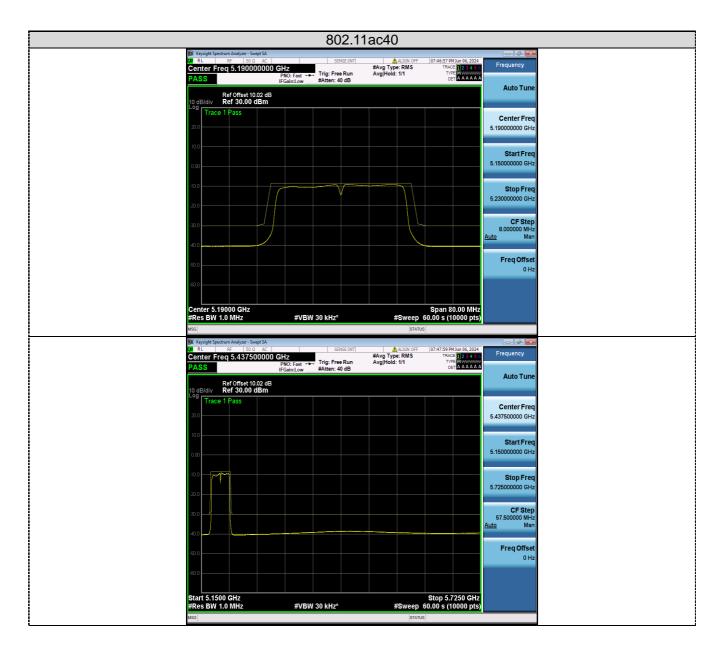



Figure 1: Transmit spectral power mask


Test Procedure

- 1. The measurement procedure follows ETSI EN 301 893 (V2.1.1) Sub-clause .4.6.2.1.
- 2. The measurement shall only be performed at normal test conditions.

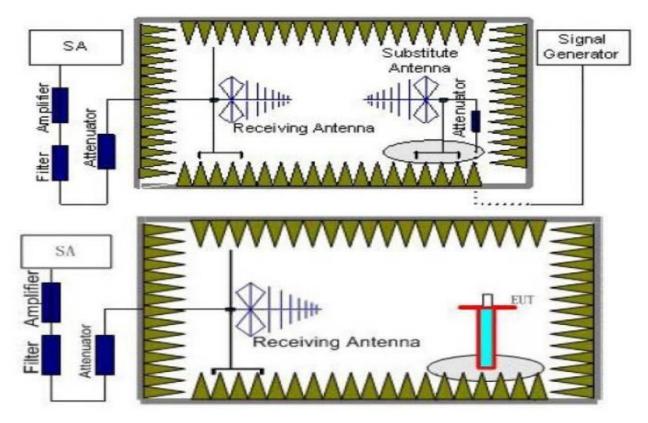

<u>Test Result</u>


The test plots as follow:

4.6. Receiver spurious emissions

The spurious emissions of the receiver shall not exceed the limits given in table 4.

Table 4: Spurious radiated emission limits

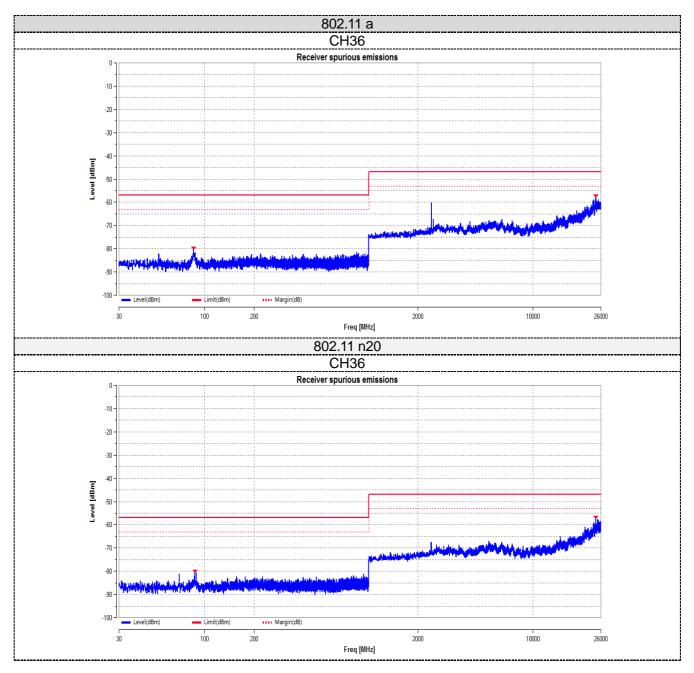

Frequency range	Maximum power	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 26 GHz	-47 dBm	1 MHz

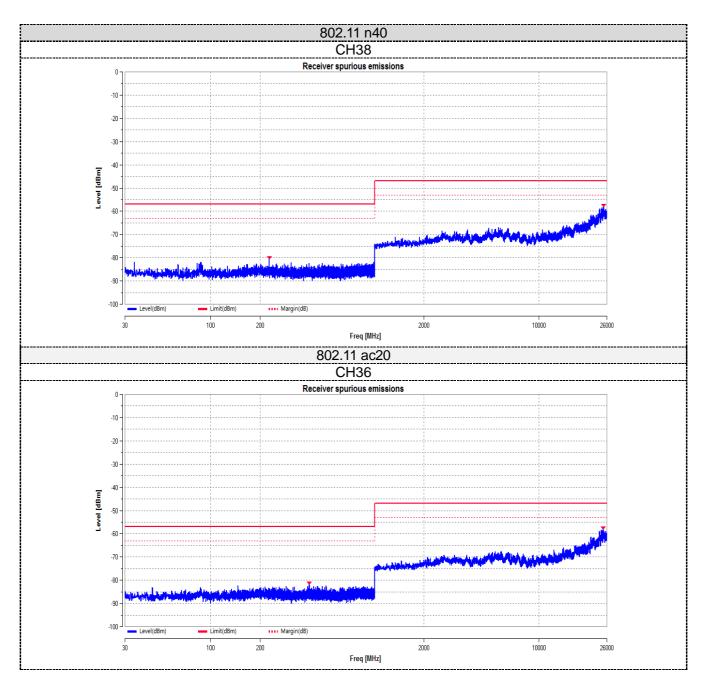
Test Procedure

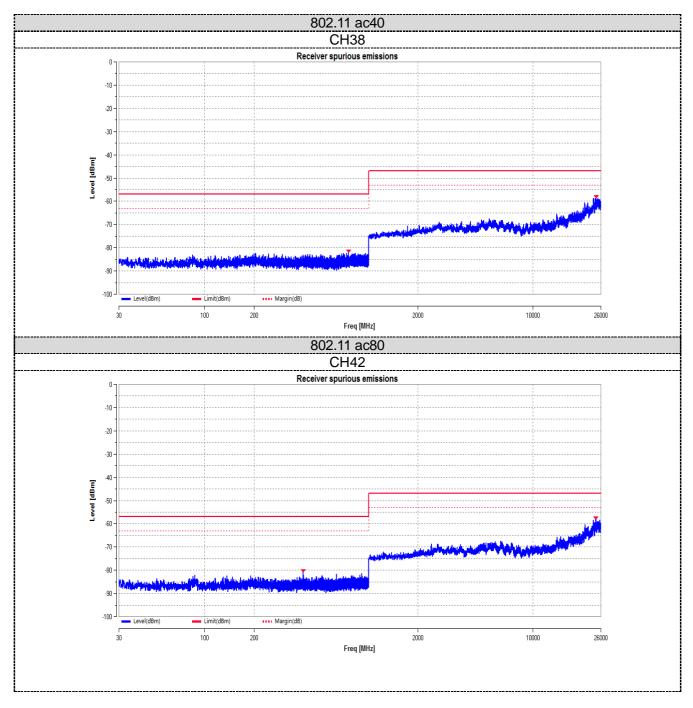
- 1. The measurement procedure follows ETSI EN 301 893 (V2.1.1) Sub-clause 5.4.7.2.2
- 2. The measurement shall only be performed at normal test conditions.
- 3. One channel out of the declared channels for each sub-band shall be tested.

Test Configuration

Effective Radiated Power measurement (30 MHz to 26 GHz)




TEST RESULTS


The Worst Test Result For 802.11n(20MHz) (The Worst Case)					
Frequency (MHz)	Polarization (H/V)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector
		Channel 36 (51	80MHz)		
55.87	Н	-83.69	-57.00	-26.69	PK
62.72	V	-76.15	-57.00	-19.15	PK
805.33	Н	-75.96	-57.00	-18.96	PK
921.52	V	-76.24	-57.00	-19.24	PK
1242.36	Н	-64.73	-47.00	-17.73	PK
1312.31	V	-65.39	-47.00	-18.39	PK
6270.09	Н	-59.90	-47.00	-12.90	PK
6367.02	V	-61.61	-47.00	-14.61	PK

NOTE: All the modes have been tested and recorded worst mode in the report.

Conducted Spurious Emissions:

NOTE: All the modes have been tested and recorded worst mode in the report.

4.7. Dynamic Frequency Selection (DFS)

DFS parameters

Tuble B.T. Brorequirement values	Table	D.1:	DFS	requirement values
----------------------------------	-------	------	-----	--------------------

Parameter	Value	
Channel Availability Check Time	60 s (see note 1)	
Minimum Off-Channel CAC Time	6 minutes (see note 2)	
Maximum Off-Channel CAC Time	4 hours (see note 2)	
Channel Move Time	10 s	
Channel Closing Transmission Time	e 1s	
Non-Occupancy Period	30 minutes	
	ninal bandwidth falls completely or partly within the 0 MHz, the <i>Channel Availability Check Time</i> shall be	
NOTE 2: For channels whose nominal bandwidth falls completely or partly within the band 5 600 MHz to 5 650 MHz, the <i>Off-Channel CAC Time</i> shall be within range 1 to 24 hours.		

Table D.2: Interference three	shold values
-------------------------------	--------------

e.i.r.p. Spectral Density dBm/MHz		Value (see notes 1 and 2)		
	10	-62 dBm		
NOTE 1:	with a maximum e.i.r.p. de 0 dBi receive antenna. For spectral density and/or a d the DFS threshold level at relationship: DFS Detection Threshold Density (dBm/MHz) + G (d	it of the receiver of an RLAN device nsity of 10 dBm/MHz and assuming a devices employing different e.i.r.p. lifferent receive antenna gain G (dBi) the receiver input follows the following (dBm) = -62 + 10 - e.i.r.p. Spectral (Bi), however the DFS threshold level dBm assuming a 0 dBi receive		
NOTE 2:	Slave devices with a maximate have to implement radar d	mum e.i.r.p. of less than 23 dBm do not etection.		

Table D.3: Parameters of the reference DFS test signal

Pulse width	Pulse repetition	Pulses per burst
W [µs]	frequency PRF [PPS]	[PPB]
1	700	18

signal #	W [Pulse width Pulse repetition frequency W [µs] PRF (PPS)			Number of different	Pulses per burst for each
(see notes to 3)	1 Min	Max	Min	Max	PRFs	PRF (PPB) (see note 5)
1	0,5	5	200	1 000	1	10 (see note 6)
2	0,5	15	200	1 600	1	15 (see note 6)
3	0,5	15	2 300	4 000	1	25
4	20	30	2 000	4 000	1	20
5	0,5	2	300	400	2/3	10 (see note 6)
6	0,5	2	400	1 200	2/3	15 (see note 6)
	<u>P</u> 1			/		
	(7 HW) U -1 -2		50;	0		
	-1 -	20		0	100	
	-1 -2 -3 0; -2,5	C1		60 80	100	
dit be ch	adar test signals 5 fferent PRF values between 20 PPS nosen shall be betw	20 and 6 are sin . For radar tes and 50 PPS. veen 80 PPS	40 % of time (of width j gle pulse based S st signal 5, the diff For radar test sigr and 400 PPS. See	60 80 pulse) taggered PRF ra ference between nal 6, the differer e figure D.3.	adar test signal the PRF value nce between th	es chosen shall le PRF values
dii be ch NOTE 4: Ap bu Fo	adar test signals 5 fferent PRF values between 20 PPS nosen shall be betw part for the Off-Cha urst of pulses. See for the Off-Channel	20 and 6 are sing For radar test and 50 PPS. veen 80 PPS annel CAC test figures D.1, E CAC testing,	40 % of time (of width j gle pulse based S st signal 5, the diff For radar test sigr and 400 PPS. See sting, the radar tes 0.3 and D.4. repetitive bursts s	60 80 pulse) taggered PRF ra ference between hal 6, the differen e figure D.3. st signals above hall be used for	adar test signal the PRF value nce between th shall only conta the total durati	es chosen shall le PRF values ain a single on of the test.
dii be ch NOTE 4: Ap bu Fc Se NOTE 5: Th	adar test signals 5 fferent PRF values between 20 PPS nosen shall be betw part for the Off-Cha urst of pulses. See	20 and 6 are sing For radar test and 50 PPS veen 80 PPS annel CAC test figures D.1, E CAC testing, D.5. See also pulses in a bu	40 % of time (of width j gle pulse based S st signal 5, the diff For radar test sign and 400 PPS. See sting, the radar tes 0.3 and D.4. repetitive bursts s o clauses 4.7.2.2, st irst is equal to the	60 80 pulse) taggered PRF ra ference between hal 6, the difference figure D.3. st signals above hall be used for 5.3.8.2.1.3.1 and	adar test signal the PRF value nce between th shall only conta the total durate 1 5.3.8.2.1.3.2.	es chosen shall le PRF values ain a single on of the test.

Table D.4: Parameters of radar test signals

Table D.5: Detection probability

	Detection Probability ('d)	
Parameter		Channels whose nominal bandwidth falls partly or completely within the 5 600 MHz to 5 650 MHz band	Other channels	
CAC, Off-Channel CAC In-Service Monitoring		99,99 %	60 %	
		60 %		
NOTE:	P _d gives the probability of detection per simulated radar burst and represents a minimum level of detection performance under defined conditions. Therefore P _d does not represent the overall detection probability for any particular radar under real life condition			

<u>Test set-ups</u>

Set-up A

Set-up A is a set-up whereby the UUT is an RLAN device operating in master mode. Radar test signals are injected into the UUT. This set-up also contains an RLAN device operating in slave mode which is associated with the UUT.

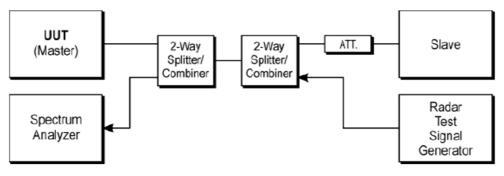


Figure 4: Set-up A

<u>Set-up B</u>

Set-up B is a set-up whereby the UUT is an RLAN device operating in slave mode, with or without Radar Interference Detection function. This set-up also contains an RLAN device operating in master mode. The radar test signals are injected into the master device. The UUT (slave device) is associated with the master device.

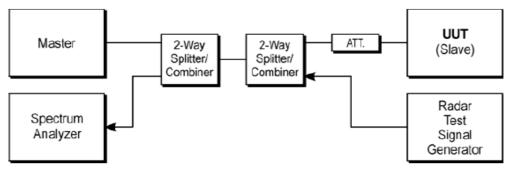
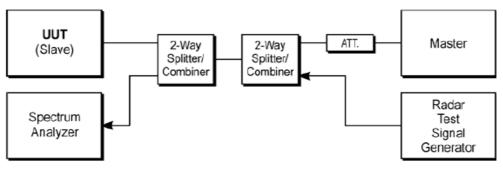
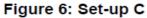




Figure 5: Set-up B

Set-up C

The UUT is an RLAN device operating in slave mode with Radar Interference Detection function. Radar test signals are injected into the slave device. This set-up also contains an RLAN device operating in master mode. The UUT (slave device) is associated with the master device.

DFS technical requirements specifications

Follow table lists the DFS related technical requirements and their applicability for every operational mode. If the RLAN device is capable of operating in more than one operational mode then every operating mode shall be assessed separately.

Requirement		DFS Operational mode			
	Master	Slave without radar detection (see table D.2, note 2)	Slave with radar detection (see table D.2, note 2)		
Channel Availability Check	\checkmark	Not required	√(see note 2)		
Off-Channel CAC (see note 1) 1	Not required	√(see note 2)		
In-Service Monitoring	\checkmark	Not required			
Channel Shutdown					
Non-Occupancy Period	\checkmark	Not required			
Uniform Spreading		Not required	Not required		
NOTE 2: A slave with rada	it only after the slave ha	d to perform a CAC or Off-Cl s detected a radar signal on t			

Applicability of DFS requirements

TEST RESULTS

Testing is not required for nominal channel bandwidths that fall completely within the frequency range 5 150 MHz to 5 250 MHz. So this test item is not applicable for the EUT.

4.8. Adaptivity

Requirements and limits

Adaptivity (Channel Access Mechanism) is an automatic mechanism by which a device limits its transmissions and gains access to an Operating Channel.

The present document defines two types of adaptive equipment:

- Frame Based Equipment;
- Load Based Equipment.

Adaptivity is not intended to be used as an alternative to DFS to detect radar transmissions, but to detect transmissions from other RLAN devices operating in the band. DFS requirements are covered by clause 4.2.6.

Frame Based Equipment:

Frame Based Equipment shall comply with the following requirements:

1) The Fixed Frame Periods supported by the equipment shall be declared by the manufacturer. See clause 5.4.1, item q). This shall be within the range of 1 ms to 10 ms. Transmissions can start only at the beginning of a Fixed Frame Period. See figure 2 below. An equipment may change its Fixed Frame Period but it shall not do more than once every 200 ms.

2) Immediately before starting transmissions on an Operating Channel at the start of a Fixed Frame Period, the Initiating Device shall perform a Clear Channel Assessment (CCA) check during a single Observation Slot. The Operating Channel shall be considered occupied if the energy level in the channel exceeds the ED Threshold Level (TL) given in point 6) below. If the Initiating Device finds the Operating Channel(s) to be clear, it may transmit immediately. See figure 2.

If the Initiating Device finds an Operating Channel occupied, then there shall be no transmissions on that channel during the next Fixed Frame Period. The Frame Based Equipment is allowed to continue Short Control Signalling Transmissions on this channel providing it complies with the requirements given in clause 4.2.7.3.3.

For equipment having simultaneous transmissions on multiple (adjacent or non-adjacent) Operating Channels, the equipment is allowed to continue transmissions on other Operating Channels providing the CCA check did not detect any signals on those channels.

The total time during which Frame Based Equipment can have transmissions on a given channel without reevaluating the availability of that channel, is defined as the Channel Occupancy Time (COT).

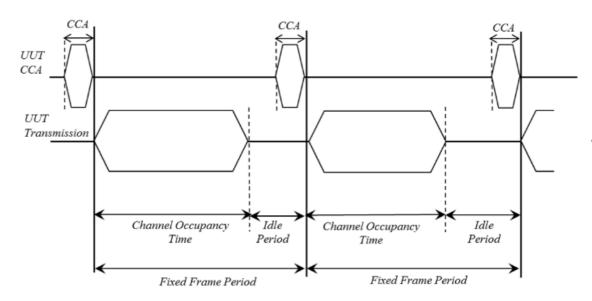
The equipment can have multiple transmissions within a Channel Occupancy Time without performing an additional CCA on this Operating Channel providing the gap between such transmissions does not exceed 16 µs.

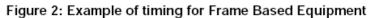
If the gap exceeds 16 μ s, the equipment may continue transmissions provided that an additional CCA detects no RLAN transmissions with a level above the threshold defined in point 6). The additional CCA shall be performed within the gap and within the observation slot immediately before transmission. All gaps are counted as part of the Channel Occupancy Time.

3) An Initiating Device is allowed to grant an authorization to one or more associated Responding Devices to transmit on the current Operating Channel within the current Channel Occupancy Time. A Responding Device that receives such a grant shall follow the procedure described in clause 4.2.7.3.1.5.

4) The Channel Occupancy Time shall not be greater than 95 % of the Fixed Frame Period defined in point 1) and shall be followed by an Idle Period until the start of the next Fixed Frame Period such that the Idle Period is at least 5 % of the Channel Occupancy Time, with a minimum of 100 μs.

5) The equipment, upon correct reception of a packet which was intended for this equipment, can skip CCA and immediately proceed with the transmission of management and control frames (e.g. ACK and Block ACK frames). A consecutive sequence of such transmissions by the equipment, without it performing a new CCA, shall not exceed the Maximum Channel Occupancy Time as defined in point 4) above.


For the purpose of multi-cast, the ACK transmissions (associated with the same data packet) of the individual devices are allowed to take place in a sequence.


6) The ED Threshold Level (TL), at the input of the receiver, shall be proportional to the maximum transmit power (PH) according to the formula which assumes a 0 dBi receive antenna and PH to be specified in dBm e.i.r.p.

For $\dot{P}H \le 13$ dBm: TL = -75 dBm/MHz

For 13 dBm < PH < 23 dBm: TL = -85 dBm/MHz + (23 dBm - PH)

For PH \ge 23 dBm: TL = -85 dBm/MHz

Load Based Equipment:

Before a transmission or a burst of transmissions on an Operating Channel, the Initiating Device shall operate at least one Channel Access Engine that executes the procedure described in step 1) to step 8) below. This Channel Access Engine makes use of the parameters defined in table 7 or table 8 in clause 4.2.7.3.2.4. A single Observation Slot as defined in clause 3.1 and as referenced by the procedure in the present clause shall have a duration of not less than 9 µs.

An Initiating Device shall operate at least one and no more than four different Channel Access Engines each with a different Priority Class as defined in clause 4.2.7.3.2.4:

1) The Channel Access Engine shall set CW to CWmin.

2) The Channel Access Engine shall select a random number q from a uniform distribution over the range 0 to CW. Note 2 in table 7 defines an alternative range for q when the previous or next Channel Occupancy Time is greater than the maximum Channel Occupancy Time specified in table 7.

3) The Channel Access Engine shall initiate a Prioritization Period as described in step 3) a) to step 3) c):

a) The Channel Access Engine shall set p according to the Priority Class associated with this Channel Access Engine. See clause 4.2.7.3.2.4.

b) The Channel Access Engine shall wait for a period of 16 µs.

c) The Channel Access Engine shall perform a Clear Channel Assessment (CCA) on the Operating Channel during a single Observation Slot:

i) The Operating Channel shall be considered occupied if other transmissions within this channel are detected with a level above the ED threshold defined in clause 4.2.7.3.2.5. In this case, the Channel Access Engine shall initiate a new Prioritization Period starting with step 3) a) after the energy within the channel has dropped below the ED threshold defined in clause 4.2.7.3.2.5.

ii) In case no energy within the Operating Channel is detected with a level above the ED threshold defined in clause 4.2.7.3.2.5, p may be decremented by not more than 1. If p is equal to 0, the Channel Access Engine shall proceed with step 4), otherwise the Channel Access Engine shall proceed with step 3) c).

4) The Channel Access Engine shall perform a Backoff Procedure as described in step 4) a) to step 4) d): a) This step verifies if the Channel Access Engine satisfies the Post Backoff condition. If q < 0 and the

Channel Access Engine is ready for a transmission, the Channel Access Engine shall set CW equal to CWmin and shall select a random number q from a uniform distribution over the range 0 to CW before proceeding with step 4) b). Note 2 in table 7 defines an alternative range for q when the previous or next Channel Occupancy Time is greater than the maximum Channel Occupancy Time specified in table 7.

b) If q < 1 the Channel Access Engine shall proceed with step 4) d). Otherwise, the Channel Access Engine may decrement the value q by not more than 1 and the Channel Access Engine shall proceed with step 4) c).
c) The Channel Access Engine shall perform a Clear Channel Assessment (CCA) on the Operating Channel during a single Observation Slot:

i) The Operating Channel shall be considered occupied if energy was detected with a level above the ED threshold defined in clause 4.2.7.3.2.5. In this case, the Channel Access Engine shall continue with step 3).
ii) If no energy was detected with a level above the ED threshold defined in clause 4.2.7.3.2.5, the Channel Access Engine shall continue with step 4) b).

d) If the Channel Access Engine is ready for a transmission the Channel Access Engine shall continue with step 5). Otherwise, the Channel Access Engine shall decrement the value q by 1 and the Channel Access Engine shall proceed with step 4) c). It should be understood that q can become negative and keep decrementing as long as the Channel Access Engine is not ready for a transmission.

If only one Channel Access Engine of the Initiating Device is in this stage (see note 1) the Channel Access Engine shall proceed with step 6). If the Initiating Device has a multitude of Channel Access Engines in this stage (see note 2), the Channel Access Engine with highest Priority Class in this multitude shall proceed with step 6) and all other Channel Access Engines in the current stage shall proceed with step 8).

NOTE 1: This is equivalent to the equipment having no internal collision.

NOTE 2: This is equivalent to the equipment having one or more internal collisions.

The Channel Access Engine may start transmissions belonging to the corresponding or higher Priority Classes, on one or more Operating Channels. If the initiating device transmits in more than one Operating Channels, it shall comply with the requirements contained in clause 4.2.7.3.2.3:

a) The Channel Access Engine can have multiple transmissions without performing an additional CCA on this Operating Channel providing the gap in between such transmissions does not exceed 16 μ s. Otherwise, if this gap exceeds 16 μ s and does not exceed 25 μ s, the Initiating Device may continue transmissions provided that no energy was detected with a level above the ED threshold defined in clause 4.2.7.3.2.5 for a duration of one Observation Slot.

b) The Channel Access Engine may grant an authorization to transmit on the current Operating Channel to one or more Responding Devices. If the Initiating Device issues such a transmission grant to a Responding Device, the Responding Device shall operate according to the procedure described in clause 4.2.7.3.2.7.
c) The Initiating Device may have simultaneous transmissions of Priority Classes lower than the Priority Class of the Channel Access Engine, provided that the corresponding transmission duration (Channel Occupancy Time) is not extended beyond the time that is needed for the transmission(s) corresponding to the Priority Class of the Channel Access Engine.

7) When the Channel Occupancy has completed, and it has been confirmed that at least one transmission that started at the beginning of the Channel Occupancy was successful, the Initiating Device proceeds with step 1) otherwise the Initiating Device proceeds with step 8).

8) The Initiating Device may retransmit. If the Initiating Device does not retransmit the Channel Access Engine shall discard all data packets associated with the unsuccessful Channel Occupancy and the Channel Access Engine shall proceed with step 1). Otherwise, the Channel Access Engine shall adjust CW to $((CW + 1) \times m) - 1$ with $m \ge 2$. If the adjusted value of CW is greater than CWmax the Channel Access Engine may set CW equal to CWmax. The Channel Access Engine shall proceed with step 2).

According to clause 4.2.7.3.2.4 where four different Priority Classes are defined, an Initiating Device shall operate only one Channel Access Engine for each Priority Class implemented.

CW may take values that are greater than the values of CW in step 1) to step 8).

Equipment shall consider a channel to be occupied as long as other RLAN transmissions are detected at a level greater than the ED Threshold Level (TL). The ED Threshold Level (TL) is integrated over the total Nominal Channel Bandwidth of all Operating Channels used by the equipment.

The ED Threshold level (TL) depends on the type of equipment:

Option 1: For equipment that for its operation in the 5 GHz bands is conforming to IEEE 802.11[™]-2016 [9], clause 17, clause 19 or clause 21, or any combination of these clauses, the ED Threshold Level (TL) is independent of the equipment's maximum transmit power (PH). Assuming a 0 dBi receive antenna the ED Threshold Level (TL) shall be:

TL = -75 dBm/MHz

Option 2: For equipment conforming to one or more of the clauses listed in Option 1, and to at least one other operating mode, and for equipment conforming to none of the clauses listed in Option 1, the ED Threshold Level (TL) shall be proportional to the equipment's maximum transmit power (PH). Assuming a 0 dBi receive antenna the ED Threshold Level (TL) shall be:

For PH

≤ 13 dBm: TL = -75 dBm/MHz

For 13 dBm < PH < 23 dBm: TL = -85 dBm/MHz + (23 dBm - PH) (3)

For PH \ge 23 dBm: TL = -85 dBm/MHz

Equipment shall consider a channel to be occupied as long as other RLAN transmissions are detected at a level greater than the TL.

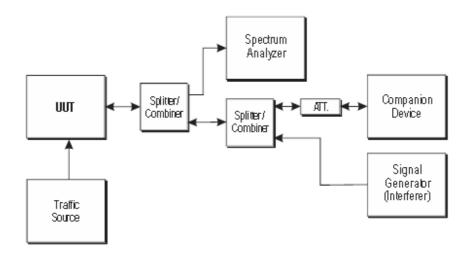
Short Control Signalling Transmissions (FBE and LBE)

Frame Based Equipment and Load Based Equipment are allowed to have Short Control Signalling Transmissions on the Operating Channel providing these transmissions comply with the requirements in clause 4.2.7.3.3. It is not required for adaptive equipment to implement Short Control Signalling Transmissions.

Test Procedure

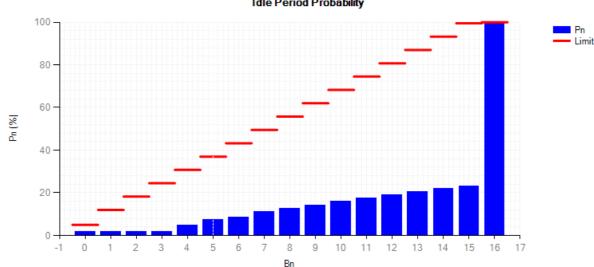
Refer to ETSI EN 301 893 V2.1.1 (2017-05) Clause 5.4.9

These measurements shall only be performed at normal test conditions.


The different steps below define the procedure to verify the efficiency of the adaptivity mechanism of the equipment.

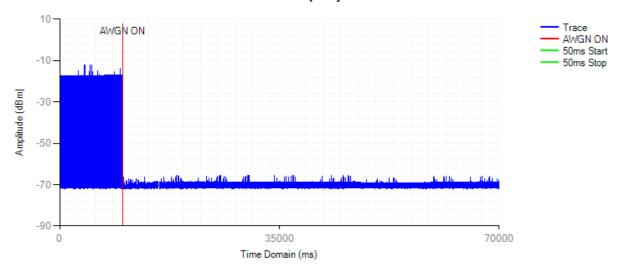
Step 1:

• The UUT shall connect to a companion device during the test. The signal generator, the spectrum analyser, the UUT, the traffic source and the companion device are connected using a set-up equivalent to the example given by figure 14 although the interference source is switched off at this point in time. The spectrum analyser is used to monitor the transmissions of the UUT in response to the interference signal. The traffic source might be part of the UUT itself.


• The received signal level (wanted signal from the companion device) at the UUT shall be sufficient to maintain a reliable link for the duration of the test. A typical value for the received signal level which can be used in most cases is -50 dBm/MHz.

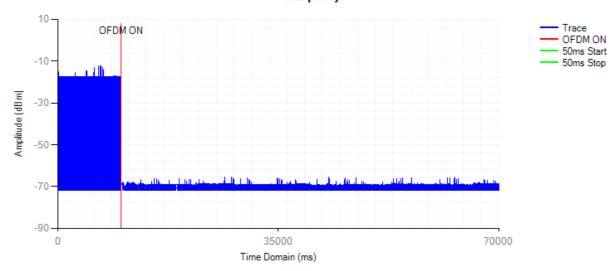
Test Configuration

TEST RESULTS


According to Table 11 in clause 5.3.2 of ETSI EN 301 893 V2.1.1(2017-05), for adaptivity, testing shall be performed using the highest nominal channel bandwidth. So this test item is only performed on 802.11ac(80MHz; Channel 42: 5210MHz)

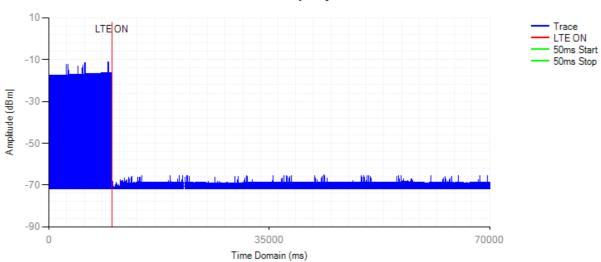
Idle Period Probability

Test Mode	802.11ac(80MHz; Channel 42: 5210MHz)
AWGN Interference Level (dBm)	-63.95
Interference Start Time (ms)	100
Stop time after interfering signal(ms)	100
Suggest q Level	4
Max. COT (ms)	5.36
Pulse width (ms)	0
Duty Cycle (%)	0


Test plot For 802.11ac(80MHz; Channel 42: 5210MHz):

Adaptivity

Test Mode	802.11ac(80MHz; Channel 42: 5210MHz)
OFDM Interference Level (dBm)	-66.25
Interference Start Time (ms)	100
Stop time after interfering signal(ms)	100
Suggest q Level	4
Max. COT (ms)	5.26
Pulse width (ms)	0
Duty Cycle (%)	0


Test plot For 802.11ac(80MHz; Channel 42: 5210MHz):

Adaptivity

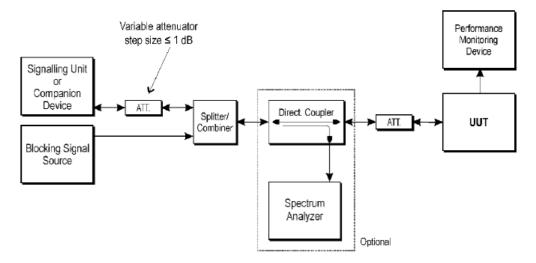
Test Mode (MAIN Port)	802.11ac(80MHz; Channel 42: 5210MHz)
LTE Interference Level (dBm)	-65.93
Interference Start Time (ms)	100
Stop time after interfering signal(ms)	100
Suggest q Level	4
Max. COT (ms)	5.81
Pulse width (ms)	0
Duty Cycle (%)	0

Test plot For 802.11ac(80MHz; Channel 42: 5210MHz):

Adaptivity

4.9. Receiver Blocking

Limits


ETSI EN 301 893 Sub-4.2.8.4

While maintaining the minimum performance criteria as defined in clause 4.2.8.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined in table 9.

Wanted signal mean power	Blocking signal frequency	Blocking signa (see n	Type of blocking				
from companion device (dBm)	(MHz)	Master or Slave with radar detection (see table D.2, note 2)	Slave without radar detection (see table D.2, note 2)	signal			
Pmin + 6 dB	5 100	-53	-59	Continuous Wave			
Pmin + 6 dB	4 900 5 000 5 975	-47	-53	Continuous Wave			
 NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined clause 4.2.8.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the same levels should be used at the antenna connector irrespective 							
of antenna gain.							

Table 9: Receiver Blocking parameters

TEST CONFIGURATION:

TEST PROCEDURE

Please refer to ETSI EN 301 893 Sub-clause 5.4.10.2.1 for the measurement method.

TEST RESULTS

The Worst Test Result For 802.11a/CH36 (The Worst Case)							
Wanted signal mean power from	nean power from Blocking signal		g signal (dBm)	Limit(PER)	test	Result	
companion device (dBm)		Test Value	Limit		value(PER)	Result	
	5100	-58	-59	10%	3%	PASS	
-88(Pmin) + 6dB	4900	-51	-53	10%	6%	PASS	
-00(FIIIII) + 00D	5000	-51	-53	10%	5%	PASS	
	5975	-52	-53	10%	3%	PASS	

The Worst Test Result For 802.11n 20/CH36 (The Worst Case)							
Wanted signal mean power from	Blocking signal	Blocking signal power (dBm)		Limit(PER)	test	Result	
companion device (dBm)	frequency (MHz)	Test Value	Limit		value(PER)	Result	
	5100	-58	-59	10%	4%	PASS	
-85(Pmin) + 6dB	4900	-51	-53	10%	5%	PASS	
-00(PIIIII) + 00D	5000	-52	-53	10%	6%	PASS	
	5975	-52	-53	10%	4%	PASS	

The Worst Test Result For 802.11 n 40/CH38 (The Worst Case)							
Wanted signal mean power from	Blocking signal	Blocking signal power (dBm)		Limit(PER)	test	Result	
companion device (dBm)	frequency (MHz)	Test Value	Limit		value(PER)	Result	
	5100	-58	-59	10%	3%	PASS	
-87(Pmin) + 6dB	4900	-51	-53	10%	5%	PASS	
-07 (PIIIII) + 00D	5000	-52	-53	10%	2%	PASS	
	5975	-51	-53	10%	4%	PASS	

The Worst Test Result For 802.11 ac 80/CH42 (The Worst Case)							
Wanted signal mean power from	Blocking signal	Blocking signal power (dBm)		Limit(PER)	test	Result	
companion device (dBm)	frequency (MHz)	Test Value	Limit		value(PER)	Result	
	5100	-58	-59	10%	5%	PASS	
99(Dmin) + 6dD	4900	-50	-53	10%	4%	PASS	
-88(Pmin) + 6dB	5000	-51	-53	10%	5%	PASS	
	5975	-51	-53	10%	1%	PASS	

4.10. User Access Restrictions

Requirement

The equipment shall be so constructed that settings (hardware and/or software) related to DFS shall not be accessible to the user if changing those settings result in the equipment no longer being compliant with the DFS requirements in EN301893 (clause 4.7) The above requirement includes the prevention of indirect access to any setting that impacts DFS.

<u>Result</u>

The EUT do not use the DFS Band and The customers will not obtain the information to set hardware and/ software related to DFS, if the product is on sales. So The EUT meets this requirement.

4.11. Geo-location capability

Requirement

Geo-location capability is a feature of the RLAN device to determine its geographical location with the purpose to configure itself according to the regulatory requirements applicable at the geographical location where it operates. The geo-location capability may be present in the equipment or in an external device (temporary) associated with the equipment operating at the same geographical location during the initial power up of the equipment. The geographical location may also be available in equipment already installed and operating at the same geographical location.

The geographical location determined by the equipment as defined in the above shall not be accessible to the user.

<u>Result</u>

This requirement only applies to equipment with geo-location capability, and the EUT do not support this fuction. So this requirement is not applicable for the EUT.

5. TEST SETUP PHOTOS OF THE EUT

Reference to the test report No. GTS20240426022-1-14.

6. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No. **GTS20240426022-1-14.**

.....End of Report.....